MONSOON PROCESS
aloft, or from storm-produced outflows at the surface.[19] However the lifting occurs, the air cools due to expansion in lower pressure, which in turn produces condensation.
In winter, the land cools off quickly, but the ocean retains heat longer. The cold air over the land creates a high pressure area which produces a breeze from land to ocean.[15] Monsoons are similar to sea and land breezes, a term usually referring to the localized, diurnal (daily) cycle of circulation near coastlines, but they are much larger in scale, stronger and seasonal.[20]
Most summer monsoons have a dominant westerly component and a strong tendency to ascend and produce copious amounts of rain (because of the condensation of water vapor in the rising air). The intensity and duration, however, are not uniform from year to year. Winter monsoons, by contrast, have a dominant easterly component and a strong tendency to diverge, subside and cause drought.[21]
Even more broadly, it is now understood that in the geological past, monsoon systems likely accompanied the formation of supercontinents such as Pangaea, with their extreme continental climates
Europe
The rain usually arrives in two waves, at the beginning of June and again in mid to late June. The European monsoon is not a monsoon in the traditional sense in that it doesn't meet all the requirements to be classified as such. Instead the Return of the Westerly is more regarded as a conveyor belt that delivers a series of low pressure centers to Western Europe where they create unseasonable weather. These storms generally feature significantly lower than average temperatures, fierce rain or hail, thunder and strong winds.[32]
The Return of the Westerly affects Europe's Northern Atlantic coastline, more precisely Ireland, Great Britain, the Benelux countries, Western Germany, Northern France and parts of Scandinavia.
No comments:
Post a Comment